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SUMMARY 

Viscous-inviscid interaction is used to compute steady two-dimensional, transonic flows for solid and porous 
aerofoils. A full-potential code was coupled with both a laminar/transition/turbulent integral boundary- 
layer/turbulent wake code and the finite-difference boundary-layer code using the semi-inverse methods of 
Carter and Wigton. The coupling was performed using the transpiration coupling concept, thus allowing for 
analysis of porous aerofoils with passive physical transpiration. The computations confirm experimental 
findings that passive physical transpiration can lead to a lower drag coefficient and a higher lift coefficient, a 
weaker shock and elimination of shock-induced separation. Nevertheless, it is very important that the extent 
of the porous region and permeability factor distribution of the porous region are chosen carefully if these 
improvements are to be achieved. 

KEY WORDS Viscous-Inviscid Interaction Transonic Flows Computational Aerodynamics Surface Transpiration 
Flows 

INTRODUCTION 

Shock-free or nearly shock-free transonic configurations have favourable properties, such as  
minimum wave drag and no or reduced shock-induced separation. Unfortunately, at off-design 
conditions shock-free configurations rapidly loose their advantages. In order to widen the off- 
design margins of almost shock-free flow one feasible approach is to modify the surface boundary 
conditions on the aerofoil by making a portion of the aerofoil surface Surface 
transpiration may be applied in an active (or forced) mode or in a passive (self-ventilated) mode. An 
example of a passive method is allowing the pressure inside a chamber (underneath the porous 
surface) to adjust to a value that is in equilibrium with Darcy's law for porous material and the 
external flow (Figure 1). In this case, the net mass flow through the perforated aerofoil surface is 
zero. 

Several experimental investigations have recently been carried out for passive transpiration on 
an aerofoil with a perforated upper surface having a cavity underneath. 

Savu et aL3 made Schlieren photographs for a symmetric aerofoil with a perforated upper 
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Figure 1. Passive physical transpiration for a porous RAE 2822 aerofoil 

surface extending from near the leading edge to near the trailing edge. The porosity was equal to 
zero at the ends of the porous region and reached a single maximum inside the region. They 
observed that the shock wave was much weaker on the porous side of the aerofoil. 

Krogmann et aL5 experimentally studied a supercritical aerofoil with uniformly perforated 
upper surface over the length of 7-5 per cent.chord. For high angle of incidence the drag coefficient 
was much reduced with the porous aerofoil, whereas at low incidence the drag was only slightly 
reduced. At M = 0.74 the maximum lift coefficient was lower for the porous aerofoil than for the 
solid surface aerofoil. Surprisingly, at higher free stream Mach numbers the maximum lift 
Coefficient was higher for the porous aerofoil. 

Nagamatsu et aL6 experimentally studied a transonic aerofoil with perforated upper surface 
over the length of 27 per cent chord. When the shock wave was located between the centre and rear 
of the porous region the drag coefficient was reduced below that for the solid aerofoil. However, 
slightly higher drag coefficients were found when the shock wave was forward of the centre of the 
porous region. No theoretical studies of viscous-inviscid interaction for porous aerofoils or 
cascades in the passive mode are at present available apart from the work of O l l i ~ ~ g . ~  

INTEGRAL BOUNDARY-LAYER CODE 

The integral boundary layer method was chosen to be the primary means of computing the 
boundary layer and wake. This is because it is competitive with the finite-difference method with 
respect to accuracy for certain types of flow and is simpler to program and generally requires an 
order of magnitude less computer time7 to run than the finite-difference method. 

The boundary layer is assumed to be divided into laminar, transitional and fully turbulent 
regions in the streamwise direction. Near the leading edge of the aerofoil the boundary layer is 
assumed to be laminar. The attached laminar boundary layer is computed in the direct mode by a 
modified form of a compressible Thwaites method.8 The tangential inviscid velocity on the aerofoil 
surface ui is obtained from an inviscid flow solver. If laminar separation is indicated, the boundary 
layer is assumed to make an abrupt transition to fully turbulent flow. 

Two options are available for determining transition: one option is to enforce abrupt transition 
at a specified point; the other option is to calculate the transition region from the empirical method 
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of Abu-Ghannam and Shaw9 modified for compressibility. The start of transition is determined 
from an empirical correlation for the incompressible momentum thickness Reynolds number as a 
function of the free-stream turbulence level and an incompressible streamwise velocity gradient 
parameter. Other correlations are used to determine the extent of the transition region and the 
momentum thickness at the end of transition. Additional correlations then allow the momentum 
thickness, shape factor and skin friction coefficient in the transition region to be computed. 
Stewartson's'O transformation is used to relate incompressible and compressible quantities. The 
method is invalid when the transition region includes separated flow or a shock wave or when 
transition extends into the wake. 

The turbulent part of the boundary layer and the entire wake are calculated with the lag- 
entrainment integral method of Green et d." modified by East et a1." in either the direct mode 
with ui specified or in the inverse mode with the mass flux defect Q specified. Here Q = piui6* where 
pi is the inviscid density on the aerofoil surface or wake centreline and 6* is the boundary layer 
thickness. Both attached and thin separated turbulent flow can be calculated. This method is based 
on the solution of three ordinary differential equations: the momentum integral equation, the 
entrainment equation and a lag equation derived from the differential turbulent kinetic energy 
equation. 

The original integral boundary layer equations' were extended to include physical surface 
transpiration. The extended momentum integral equation is 

d8 C, 8 du 
ds 2 ue ds 
---- - ( H  + 2 - M 2 ) - e  + m,, 

where m, = (p,u,)/(p,u,) is the non-dimensional transpiration mass flux. Here the subscripts e and 
w denote the edge of the boundary layer and the wall (aerofoil surface), respectively, s is the arc 
length in the streamwise direction along the aerofoil or wake centreline, 8 is the momentum 
thickness, u is the speed, C ,  is the skin friction coefficient, H is the shape factor and M is the local 
Mach number. By considering the mass conservation for a control volume with a height extending 
from the aerofoil to the edge of the boundary layer 6 and with a streamwise length ds, the equation 
for the entrainment coefficient C," is extended to 

where C, = VE/u,, V, is the entrainment velocity (positive for entrainment) and n is the co- 
ordinate normal to the aerofoil surface. Using the definition 

and combining equations (1) and (2)  results in the modified entrainment equation 

ue ds 
$ - t:l {cE + m, - H ,  

where R is Head's shape factor, 

(4) 

No change is made to the original lag equation.",'2 
In the method of Green et al.' ' the skin friction coefficient C, is computed from a correlation 
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depending on the value of the flat-plate skin friction coefficient C,, corresponding to the 
momentum thickness Reynolds number Re, of the flow. The value of this flat-plate skin friction 
coefficient is modified to account for the effects to transpiration by using the relation given by Kays 
and Crawford (Referencel3, p. 221): 

(1 + B,)0'25, 
In(1 + B,)  1'25 

'fo = cfoS/ B, I ( 5 )  

where CfOs is the flat-plate skin friction coefficient for a non-porous surface and B, = mw/(Cf,,/2). 
The value of C,, is determined by Newton iteration. It is assumed that the other empirical 
correlations used in the method of Green et and modified by East et al." are approximately 
the same for the case of a transpired boundary layer. 

In the inverse mode the dependent variables are u,, R and C,. The general form7 of the 
equations is 

du A 1 d Q  
ds B B ds 
e= --+--, 

dH, du 
ds ds 

-=C+D>,  

dC du E = E + F ~ .  
ds ds 

(7) 

The boundary layer and wake on the upper and lower sides of the aerofoil and wake centre-line 
are computed separately. The skin friction coefficient is set equal to zero in the wake. The starting 
value for u, is ui. When transition is enforced the starting value for Q is determined in either 
of two ways. One way is to assume continuity of Q. The other way is to compute Q by assuming 
that it has the value that a flat-plate boundary layer would have at the same distance from the 
leading edge. The correction for longitudinal surface curvature suggested by Green et ul." is 
incorporated. 

The system of equations is integrated with a fourth-order Runge-Kutta method.14 The 
streamwise size is clustered toward the leading and trailing edges and is smaller than that of 
the inviscid code. The first derivative of the forcing function is calculated in the supersonic region 
by first-order accurate upstream differencing and in the subsonic region by the second-order 
accurate differencing using a non-uniform grid size. l4 

The coupling boundary conditions in the inviscid code on the aerofoil and wake centreline 
are a total transpiration velocity u, normal to the aerofoil and jump conditions on the velocity 
components normal and tangent to the wake centreline. The total transpiration velocity u, 
consists of two parts: an equivalent transpiration velocity ub due to the boundary-layer 
displacement effect and a physical mass-weighted transpiration velocity u, due to suction or 
blowing through the porous aerofoil surface, such that 

W. 

1 dQ P, u, = Ub + u, = - - + - u 
Pi ds Pi 

(9) 

Here pw and u, are the density and velocity of the physically transpired fluid, respectively. 
Along the wake centreline u, = 0. It is assumed that pw is equal to the adiabatic wall density 

where I is the recovery factor and y is the specific heat ratio. For laminar flow r=(Pr )"2  



POROUS AEROFOIL ANALYSIS 107 

and for fully turbulent flow r = where Pr is the Prandtl number. For transitional flow, 
it is assumed that r = (I+)* where b = $ - y,,/6. Here, ylr is the intermittency factor: ytr = 0 
for laminar flow and ylr = 1 for fully turbulent flow. Equation (9) is derived by considering the 
difference between the continuity equations for the inviscid and viscous parts of the flow field:” 

Integrating across the boundary layer results in the displacement thickness 

The velocity jumps17 on the wake centreline in the inviscid code are 

1 QI l/HJ + KT-(l+ l /HJ . 
Pi1 

Here A indicates a jump, the subscripts u and 1 denote the upper and lower sides of the wake 
centreline, H = 6*/0 is the shape factor and K* is the curvature of the displacement surface: 

where p is the slope of the displacement surface, approximated” by 

dYU d6,* p,=-+- 

p -L-- 

dx ds ’ 

dy d6: 
dx ds ‘ I -  

A procedure similar to that of Collyer16 is used to introduce the jumps in the normal and 
tangential velocity components into the reduced velocity potential at the points on the upper 
and lower sides of the wake centreline and at the fictitious points on either side of the wake 
centreline. The unit vector in the direction normal to the surface or wake centreline is 

n = ( - yXi + x x j ) / J Z G Z ,  (18) 

where x, y are the physical Cartesian co-ordinates and X is the computational co-ordinate (Figure 
2). The unit tangent vector t is chosen to point in the downstream direction on the aerofoil and 
wake centreline. In Figure 2, the index J = 2 corresponds to the aerofoil surface and wake 
centreline, with I = IMID the leading edge, I = ITS the suction side of the trailing edge, I = ITP 
the pressure side of the trailing edge, I = MAXX the upper side of the end of the wake centreline 
and I = 2 the lower side of the end of the wake centreline. Then the unit vector in the tangential 
direction is 

t = (x,i + yxJ)IMNS/,/@ + yi), (19) 
where IMNS = 1 on the upper side of the aerofoil and wake centreline and IMNS = - 1 on the 
the lower side. Since 

ui + uj = u,t + unn, (20) 
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Figure 2. Computational plane with unit normal and tangent vectors on the aerofoil and wake centreline 

where u, u are the Cartesian velocity components and ul, u ,  are the tangential and normal 
velocity components, respectively, then 

u = ( x ~ u ~ I M N S  - yxu,)/C1, (21) 

u = (y,u,IMNS + xxu,)/C1, (22) 
where 

Contravariant velocity vector components are defined as 

[ ; ] = c J - '1 [ 3. 
Determinant D of the geometric transformation matrix is defined as 

[;: ;;I. D = det [J] = det 

Hence, 
u = Cut IMNS - (xXXY + Y ~ Y  Y)unIDI/C1~ 

V = C ,  u,/D. 

Next, physical velocity components can be defined as 

u = urn + G,, 
u = urn + G,, 

where G is the reduced velocity potential function. Then 
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Thus, 

Solving for V in equation (30), substituting it in equation (27) and solving for v, results in 

where 

From equation (21) and equation (22) it follows that 

u, = (xxu + yxv)IMNS/Cl, (35) 

which after introduction of equation (29) into equation (35) gives 

where 
U, = (C3 + G,)IMNS/C,, 

c3 = xxu, + yxv,. 

(36) 

(37) 

On the aerofoil surface u, is to be enforced in the inviscid flow solver. This is done by updating 
the reduced potential at the fictitious point at j = 1. Solving for Gy in equation (31) gives 

Then, 

Along the wake centreline the jumps in both u, and v, are to be enforced in the inviscid 
flow solver. During the grid generation the fictitious points overlapping the wake centreline are 
chosen so that xx, y,, xy  and yy have the same magnitude but opposite signs on either side of 
the wake centreline, that is 

The jump in the tangential velocity component is 

where 
(42) 

(43) 

The jump in the normal velocity component is 

where 
(45) 

(46) 
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Solving for AGy in equation (45) and using equation (42) gives 

Solving for AG, in equation (42) gives 

AGx = CIAu, = oZ. (49) 
Differentiating equation (49) with respect to X yields 

where 

d 
dX 

A G X X  =-(AGx) = C T ~ ,  

Let the index K be the indexfor the point on the upper side of the wake centreline corresponding 
to the point with index I on the lower side of the wake centreline (see Figure 2). K and I are 
related by I = MAXX + 2 - K .  Using first-order Taylor series expansions in Y gives 

G K , l  = G K , Z  - 2(GY)K,2 + ."? 

G K , 3  = G K , Z  + 2(GY)K,Z + * * * 7  

G1.3 = G1,Z + 2(GYh,Z + ...? 

GIJ = GI.2 - 2(GY)1,2 + ...* 
Subtracting equation (54) from equation (52) gives 

where rK is the circulation 
'K,l = '1.3 + r K -  2(a1)17 

rK = G K , Z  - G I , Z -  

Subtracting equation (53) from equation (55) yields 

G1,l = GK,3 - rK - 2(al)I. (58 )  

Equations (56) and (58) are used to update the reduced potential at the fictitious points on both 
sides of the wake centreline. 

Now the reduced potential at the points on the wake centreline will be considered. From 
equation (49) 

( G K + I J  - G K - 1 . z )  + (GI+i ,z  - GI-i ,z)  =4(az),. 

( G K + l , Z - 2 G K , Z  + GK-l,2)-(GI+l,Z-2GI,Z + GI-l ,Z)=4(a3)1*  

(59) 

(60) 

(61) 

From equation (50) 

Subtracting equation (60) from equation (59) and rearranging yields 

rK = rK- + 2(a,), - 2(a3),, K = ITS + 1 , .  . . , MAXX. 

where 
r K - l  =GK-l,Z-G1+l,2. 

Equation (6 1) allows the variation of the circulation along the wake centreline to be determined. 
The reduced potential on the wake centreline is found from 
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(64) 
where the superscript n denotes the iteration number. 

Trailing edge treatment 

The expressions (42) and (45) are, in general, invalid at the trailing edge point of the aerofoil. This 
is because in general at that point ( y X ) ,  # - ( Y ~ ) ~ .  If the trailing edge is treated as an aerofoil point, 
then the proper jump of u, will automatically be enforced by the procedure of equations (38) and 
(39). To enforce the required jump of u,, the following method was applied. Let E be a correction 
term to the reduced potential at the first wake centreline point such that 

where 0 < f <  1 and k = f 1. To maintain the same average value of the reduced potential 
across the wake centreline set f = $ and k = - 1. The corrected reduced velocity potentials must 
satisfy 

Inserting equations (65) and (66) into equation (67) and solving for E results in 
= Cc3u + $(c;&:1,2 - Gf;.S- l , 2 ~ ~ / c l u  + Cc3 ,  +$(c;TP+ 1.2 - c;qP5 l , 2 ~ ~ / c l l ~  (67) 

= clucll[4(Aut - c3u/clu - c31/c11) - (G;TS+ 1 , 2  - G;TS- 1,2)/clu 

- (G;TP+ 1 , 2  - G~TP-1,2)/C111/[C11(1 - f ,  - cluFkkl .  

Next, the updated circulation r;&; can be computed: 

G : l =  G;&:1,2 - G & 5 1 , 2 .  (69) 

(70) 

The updated circulation at the trailing edge is 
r n + l  = ~ + 1  

ITS ITS + 1 + 2(D2)ITP - 1 + 2(D3hTP - 1. 

The reduced potential at the trailing edge is then computed from equations (63) and (64). 

Pressure correction and wake curvature effect 

When the jump in the tangential velocity component is enforced along the wake centreline, the 
inviscid pressures must be corrected to compute the viscous pressure on the wake centreline. The 
same correction can be applied to the aerofoil surface. The approximate method of Lock and 
Firmin" is used. The formulae for the upper and lower sides of the aerofoil and wake centreline are 

where pw is the viscous pressure on the aerofoil and wake centreline and pi is the inviscid 
pressure. The viscous pressure coefficient Cpw can be written as 

C p w  = Cpi + CK, 

where CK is the correction to the inviscid pressure coefficient Cpi: 

(73) 

3 L 
C , =  Ifi- K*p,u'd*(l + l/H), 

YMZ,P, 
(74) 
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where M ,  is the upstream Mach number, p m  is the upstream pressure and the plus sign 
corresponds to the lower side of the aerofoil or wake centreline and the minus sign corresponds to 
the upper side. 

The viscous pressures should be the same on either side of the wake centreline. The jump in the 
inviscid pressure coefficient is 

ACpi = (Cpilu - (Cpih 

= ( c K ) l  - (cK)u. (75) 
Enforcing the above jumps of the u, and u,  in the inviscid code and then correcting the pressure as 

indicated does not guarantee that the viscous pressures on either side of the wake centreline will be 
exactly the same. This is because only the tangential velocity component is taken into account in 
determining C,. When the jump of the normal velocity component is large a small jump of the 
viscous pressures on either side of the wake centreline will occur. The method of Van Dalsem'* 
directly enforces the jump in the viscous pressures to be zero. 

Contribution of transpiration velocity to the flux balance 

It will now be shown how the total transpiration velocity is introduced into the mass flux balance 
at the aerofoil surface in the computational plane. In the computational plane the full-potential 
equation is 

a a 
- (DpU)  + - (DpV)  = 0. ax ay 

During the iterative solution of the discretized from of this equation, the right-hand side is equal 
to a residual which is broken down into a steady part and an artificial time part. The steady part of 
the residual consists of the net contravariant flux out of the grid cell in the computational plane. 
For the aerofoil surface at J = 2 the cell is shown in Figure 3. The components of the contravariant 
flux due to the total transpiration velocity are indicated by the '0' subscript. The U and V 
contravariant velocity components at the centre of the cell are computed from equations (26) 
and (27), respectively. Since the transpiration velocity is normal to the surface, the tangential 
velocity component u, in equation (26) is equal to zero. We are actually interested in the flux 
balance in the half cell above J = 2 and only extend the cell below the aerofoil surface to permit 

1- -- - - --r - --  J.3 - - - ~  ------ 
I I I I I 

- - - -, - - - -!-:' - - - r - - - -  
I 

I I 

, I I 
I 
I 

J.1 ---1--- L - - A - - - l - -  -1- --- 
1-1 I I t1 

Figure 3. Mass flux computation in the computational plane at the aerofoil surface ( J  = 2) 
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the same second-order differencing scheme to be used on the aerofoil surface as in the interior 
flow field. For this upper half cell the component ( p D U ) ,  makes no contribution, and thus it can 
be excluded when considering the flux balance for the entire cell. The fluxes ( p D U ) , ,  ( p D U ) ,  
and (pDV) ,  can be computed from the reduced potential at the previous iteration. The flux 
( p D V ) ,  is found by a first-order Taylor series expansion in Y :  

Adding these equations and rearranging yields 

(PDVl = 2 W V O  - (PDV2. 

The net flux in the X-direction is 

RUDX = (pDU)z - ( p D U ) ,  

and the net flux in the Y-direction is 

RVDY = (pDV)z - (PDV),  
= 2C(PDVz - (PDVOl. 

The steady part of the residual is defined to be 

RE = (RUDX + RVDY)/D,,, 

where D,, is the determinant of the Jacobian at the centre of the cell. 
On the wake centreline the value of the (pD V ) ,  is computed from the reduced potential, since the 

fictitious points in this case correspond to the physical points on the opposite side of the wake 
centreline. 

SEMI-INVERSE COUPLING METHOD 

The semi-inverse coupling method was used to couple the viscous and inviscid solutions. The 
formulae of Wigton19 and CarterZo for updating the Q values between each viscous-inviscid 
interaction cycle were investigated. Wigton' extended LeBalleur's'' von Neumann analysis to 
obtain update formulae leading to a stable convergent iteration for both attached and separated 
transonic flow. These formulae are as follows: 

For M <  1 

For M >  1 

v = n/As, As is the step size, p= 11 - Mzll/z, B is the coefficient in the momentum integral 
equation (6) and o1 and 0, are relaxation factors (equal to unity in Wigton's analysis). 

Carter's update formula is 
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where o is a relaxation factor. Wigton concluded that this formula (with o = 1) may not lead 
to convergent solutions for separated supersonic flow. 

The semi-inverse method consists of the following steps: 

1. The potential solution is advanced for a certain number of iterations on each of the 
increasingly refined grids with u, = 0 on the aerofoil surface. Then, the boundary layer code is 
run in the direct mode with velocity u specified until separation or a specified point was 
reached. At that point the boundary layer code is switched to the inverse mode with an initial 
guess for Q. 

2. Wigton’s or Carter’s formulae for updating the Q values are applied. The transpiration 
velocity and jumps in the velocity components along the wake centreline are computed. The 
potential solution is then advanced for one to five iterations on the finest grid being used, with 
the boundary conditions held constant. During the first few coupling cycles the relaxation 
factor in the inviscid flow solver was equal to unity. After that the relaxation parameter is 
increased to 1.7-1.8. The boundary layer code is run in the direct mode on the forward part of 
the aerofoil and in the inverse mode on the rest of the aerofoil and wake centreline with the Q 
values determined from the update formulae of Wigton or Carter. 

Step 2 is repeated until the error measure (u,/ui - 1)  is less than a specified value or until a 
prescribed number of iteration cycles has been reached. 

RESULTS 

Based on the previous analytic and numerical analysis, a package of computer programs, GSD28, 
was developed22 for isolated aerofoil and for cascade analysis. This software performs automatic 
computational grid generation, full potential finite area inviscid flow solution, integral and finite 
difference method solution of the complete boundary layer with wake, and automatically 
iteratively couples the inviscid and viscous parts of the flow field. Two examples of turbulent 
separating transonic flow for isolated non-lifting and lifting aerofoils were calculated. 

The computer codes developed as a part of this study can also simulate the passive transpiration 
effects of a perforated aerofoil surface with a cavity located underneath. Darcy’s law is used to 
determine the physical transpiration velocity2 

c7 = 0/(Prnqm), (87) 

where pw is the aerofoil surface pressure, pp is the cavity pressure (assumed to be constant), rs 
is the permeability factor and 0 is the non-dimensional permeability factor: a value of 6 = 0.6 
corresponds to a geometrical porosity of about 10 per cent.3 The plenum pressure is computed 
from 

P p  = s, P OP, ds s, P 5 ds, 

where s is the aerofoil surface arc length. 
The physical transpiration velocity normalized by the critical speed of sound is 
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where the asterisk denotes a critical value and ps  is the aerofoil surface pressure. 
Two distributions of 5 can be specified in the input of the present version of the code. These 

are a uniform distribution and a peaked distribution reaching its maximum inside the porous 
region and having a smooth tapering to zero at  the ends of the region. The chordwise co-ordinates 
of the beginning (xl) and end (x2) of the porous region and the location of the maximum 
permeability (x,) on the upper and lower sides of the aerofoil are input. The peaked distribution 
satisfies the following equations: 

5 = cmax sin’(n2) 
x = [sin(O-5nx’)lb, 
b = In (O.5)/ln [sin (0.5nx;)], 

where 

and x is the chordwise co-ordinate on the aerofoil surface. 

recently reported by Chen et aLZ3 
It should be pointed out that an inviscid solution of the flow problem dealt with in this paper was 

Non-lifting aerofoil example 

In the first case an isolated NACA 0012 aerofoil is at  zero is at  zero angle of attack. This case was 
also considered by Wigton.” The upstream Mach number is 0835 and the Reynolds number 
based on the chord is 24.7 x lo6. Transition was enforced at 5 per cent of the chord as in Wigton’s 
calculations, although natural transition occurred in the actual experiment. Measurements of the 
pressure coefficient C ,  for this test case were reported by Thibert et aLZ4 In order to simulate the free 
air conditions, the gap-to-chord ratio was set equal to 16 in the input to the GSD28 computer code. 
The wake extended 5 chord lengths downstream. A sequence of four consecutively refined grids of 
C-type was used. The finest grid has 80 grid cells on both the upper and lower sides of the aerofoil, 
56 cells along each side of the wake centreline and 72 C-layers of grid cells in the outward direction. 
The viscous boundary-layer/wake streamwise grid was more refined than the inviscid grid. The 
potential code was run for 150 iterations on the first grid, 100 iterations on the second grid, 80 
iterations on the third grid and 5 iterations on the fourth grid. An automatic viscous-inviscid 
coupling was then initiated whereby one viscous boundary-layer/wake calculation was made for 
each additional inviscid iteration. The overrelaxation parameter in the inviscid code was 1.858 
during the coupling. Carter’s’’ update method was used, since it was more efficient than 
Wigton’s update method for this case.” The maximum error measure (u,/ui - 1) was 0.0175 at 
x/c = 0.881 1 for the solid aerofoil results shown. 

The convergence rate and stability of the coupled viscous-inviscid solution could be further 
augmented by solving the viscous and inviscid equations simultaneously, as was demonstrated, 
for example, by Wai and YoshiharaZs and more recently by GilesZ6 and Drela.27 We have 
attempted this approach, and the preliminary results were enco~raging .~ . ’~  

A porous NACAOO12 aerofoil simulation was performed using the peaked permeability factor 



116 C. R.  OLLING AND G. S. DULIKRAVICH 

distribution on the upper and lower sides of the aerofoil with c?,,, = 0 . 1 0 , ~ ~  = 0.5, x2 = 1.0 
and x, = 0.6784. 

The Mach number field is presented in Figure 4 for the solid aerofoil case and in Figure 5 for the 
porous aerofoil case with a converged viscous-inviscid coupled solution. The displacement surface 
is indicated by the dash-dot line. The pressure coefficient for the solid aerofoil is presented in Figure 
6. The experimentally observed shock location is about 13 per cent of the chord length ahead of its 
computed location. Nevertheless, the present results predict a shock location only slightly 
upstream of that computed by Wigton.” This implies that either the experimental results are 
questionable or the commonly used numerical dissipation is i n a p p r ~ p r i a t e . ~ ~ - ~ l  The pressure 
coefficient for the porous aerofoil is presented in Figure 6. The curve begins to differ from that of the 
solid case at the beginning of the porous region. The shock is weaker, and the shock location is 
moved downstream. The drag coefficient for the solid aerofoil is C, = 004356 (the pressure drag 
coefficient is CDP = 0.03936 and the skin friction drag coefficient is C,, = 0.00421) and that for the 
porous aerofoil is C, = 0.O4260(CDD = 0.03869 and C,, = 0.00391), a reduction of 2.20 per cent. 
The plenum pressure coefficient was C,, = - 0.4382, and Cz = - 0.3396. 

In the solid aerofoil case, the total transpiration velocity, u,, normalized by the critical speed 
of sound is presented in Figure 7. In the supersonic region ahead of the shock the values are 
nearly constant and small. A large positive transpiration velocity occurs in the shock region and 
a smaller maximum occurs near the trailing edge of the aerofoil. The transpiration velocities are 
negative along the wake centreline. 

In the porous aerofoil case, u, starts to increase at  the beginning of the porous region and the 
maximum in the shock region is smaller than in the solid aerofoil case. Figure 8 illustrates the 

Figure 4. Mach number field with a contour interval of 0.02 near a solid NACA 0012 aerofoil 



Figure 5. Mach number field with a contour interval of 002 near a porous NACA 0012 aerofoil 
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equivalent and physical mass-weighted transpirations velocities, ub/a* and uc/a*, and the 
distribution of the permeability factor 5 for the porous aerofoil. Because the plenum C, is close to 
C;, physical surface blowing occurs in the supersonic region ahead of the shock and physical 
suction takes place behind the shock. 

The displacement thickness (Figure 9) shows a rapid increase starting in the shock region 
slightly ahead of that of Wigton.19 This difference may be due to the slight difference in the 
locations and strengths of the shocks in the two solutions obtained by the two different inviscid 
flow solvers. The displacement thickness near the trailing edge is reduced in the porous aerofoil 
case. 

The skin friction coefficient (Figure 10) rapidly decreases in the laminar region and then jumps 
up at the enforced transition point. The calculated separated region is shifted slightly forward of 
Wigton's solution for the solid aerofoil. In the porous aerofoil case, the physical self-induced 
blowing ahead of the shock reduces C, to near separation values, but the flow remains attached. 
Physical self-induced suction behind the shock leads to an increase of C, in that region. 

The momentum thickness O/c, shape factor H and mass flux defect Q are shown in Figures 11-13 
respectively. 

Lifting aerofoil example 

The second example is for a solid and porous RAE 2822 aerofoil. The solid aerofoil example was 
Case 10 of Reference 32. The free stream Mach number was 0-75. The geometric angle of attack was 
3.19" and the value used in the computations was 3.033" (the same as that used by Melnik 
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Figure 9. Displacement thickness, 6*/c;  solid and porous NACA 0012 aerofoils 
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et al.33 The Reynolds number based on the chord was 6.2 x lo6. Transition was enforced at 0 .03~.  
The gap-to-chord ratio was set at 100 in the inviscid flow solver and the wake length was 30 

chord lengths in order to simulate the free-air conditions more realistically. A sequence of three 
consecutively refined grids of C-type was used. 

The porous aerofoil simulation used the peaked permeability factor distribution only on the 
upper side of the aerofoil, with 5,,, = 0.10, x1 = 0.40, x2 = 1.00 and x, = 0.6588. 

Carter's2' update formula with a relaxation factor of 0.50 was used during the coupling. The 
maximum error measure (u,/u, - 1 )  was 0.0314 at x/c = 0.8767 on the upper side of the solid 
aerofoil after 400 coupling cycles. 

The trailing edge treatment was used with f = 0 over the last 100 coupling cycles. Its use resulted 
in an improved agreement between the calculated and experimental pressure coefficient 
distributions in the shock region. 

The coupled Mach number fields near the solid and porous aerofoils for viscous-inviscid 
solutions are presented in Figures 14 and 15, respectively. The jump in the inviscid velocity across 
the wake centreline can be seen in the near-wake region. 

The pressure coefficient distribution (Figure 16) shows a large difference between the coupled 
and pure inviscid solid aerofoil solutions, thus demonstrating the effect of a strong viscous-inviscid 
interaction in this case. In the poroils aerofoil case, the shock is weaker and its location is moved 
downstream. The predicted lift coefficient for the solid aerofoil was 0.821 6 and the experimental 
value was 0.743. The predicted lift coefficient for the porous aerofoil was 0.8379, an increase of 1.98 
per cent. The predicted total drag coefficient for the solid aerofoil was 0.03032 (CDp = 0.02508 

Figure 14. Mach number field with a contour interval of 0.02 near a solid RAE 2822 aerofoil 



Figure 15. Mach number field with a contour interval of 0.02 near a porous RAE 2822 aerofoil 
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and C,, = 0.00524) and the experimental value was 0.0242. The drag coefficient for the porous 
aerofoil was C, = 0.02993 (CDP = 002462) and (CDr = 0.00531), a decrease of 1.29 per 
cent. The plenum pressure coefficient was C,, = - 0.6084, and Cg = - 0.5912. 

The total transpiration velocity (Figure 17) shows high values on the upper side of the aerofoil 
near the shock and trailing edge. Figure 18 illustrates the equivalent and physical mass-weighted 
transpiration velocities, ub/u* and uc/u*, and the permeability factor 0 for the upper side of the 
porous aerofoil. Because the plenum C, is close to C,*, physical surface blowing occurs in the 
supersonic region ahead of the shock and physical suction takes place behind the shock, thus 
creating conditions for shock self-cancelation in the shock foot region. 

The displacement thicknesses on the upper and lower sides of the aerofoil/wake centreline are 
shown in Figure 19. The value on the upper side near the trailing edge is overpredicted. 

The skin friction coefficient on the upper and lower sides is presented in Figure 20. For the solid 
aerofoil case, strongly separated flow is indicated behind the shock with the separation extending 
to the trailing edge. Melnik’s solution indicates separation somewhat earlier due to the shock being 
slightly forward of that in the present solution. In the porous RAE 2822 aerofoil case, separation is 
eliminated entirely. 

The momentum thickness for the upper and lower sides is shown in Figure 21, and the shape 
factor is presented in Figure 22. The shape factor for the solid aerofoil near the trailing edge on the 
upper side does not agree well with the experimental values, owing to overprediction of the 
displacement thickness in that region. The mass flux defect is shown in Figure 23. 
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Figure 17. Total transpiration velocity, v,/a*; solid and porous RAE 2822 aerofoils 
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Figure 19. Displacement thickness, 6*/c;  solid and porous RAE 2822 aerofoils 
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CONCLUSIONS 

On the basis of the results presented, it can be concluded that coupled viscous-inviscid calculations 
of transonic separated aerofoil flow, with or without physical transpiration, are feasible. The 
computations show that passive physical transpiration can lead to a reduced drag coefficient and 
increased lift coefficient for the permeability factor distributions used in the presented work. The 
shock strength can be diminished and shock-induced separation can be eliminated. A peaked 
permeability factor distribution results in smoother solutions than a uniform permeability 
distribution. If the porosity is too large or the porous region extends too far ahead of the shock, it 
was observed that the induced blowing ahead of the shock may cause separation there. The 
aerodynamic performance of aerofoils can be decreased if the porosity is applied in an arbitrary 
manner, just as the incorrectly applied shock-free design procedure can make shocked aerofoils 
have even stronger shocks. The shape and size of the cavity under the perforated aerofoil surface 
has not been analysed. It is expected that it can influence the cavity pressure distribution and, 
therefore, the aerofoil surface pressure. 

Performance of porous aerofoils in an unsteady flow environment represents a real challenge 
because of the unsteady wave motion inside the cavity underneath the porous aerofoil surface and 
the possible strong self-induced flow oscillations. 

Consequently, it would be highly desirable to approach the entire concept of porous aerofoil 
design as an inverse problem. Thus, the optimal porosity distribution and its extent should be 
found so that a minimal possible total aerodynamic drag for the particular aerofoil and given 
global aerodynamic parameters is obtained. 
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